
Introduction to UNIX and Perl for
Biologists

Adam Burkholder

burkholderab@mail.nih.gov

What is UNIX?

Darrell Hurt, NIAID

Why Use UNIX?

• Files unmanageably large

• Analysis tools only available for UNIX

• Only way to access high performance
computing resources (HPC) at NIEHS

HPC Resources at NIEHS

• Server (wine)

– 32 CPU's

– 512 GB Memory

• Storage

– 550 TB

– Parallel File System

• Designed to be shared by a large number of
simultaneous users

How to Access HPC Resources

• An account is created for you when you first
receive nextgen sequencing data from NISC

• Send an email to NIEHS Scientific Computing
Support (scs@niehs.nih.gov)

– Request an account on the wine server

– Include your NIH username and Lab Group

mailto:scs@niehs.nih.gov

Important Notes

• All file and command names are case sensitive
– "test.txt" and "TEST.txt" can be two separate files

stored in the same directory

• Using spaces in file names is discouraged
– Use underscores or CamelCase instead (e.g.

"file_name" or "fileName" instead of "file name")

• There is no "undo"
– Files overwritten or modified cannot be restored to

their original state

• There is no "Trash" or "Recycle Bin"
– File deletion is permanent

The UNIX Shell (bash)

• Primary user interface for UNIX operating
systems

• Allows editing of commands

• Autocompletes command or file names (tab)

• Allows use of wildcard character (*) to match
one or more file names

• Manages command history
– Use up and down arrows to cycle through

previously run commands

Navigating the UNIX File System

• pwd – Prints the current "working" directory
– "/" is the root directory, similar to C: in Windows
– UNIX systems use forward slashes "/" rather than back slashes to

separate directory names
– Your "home directory" can also be accessed using the Finder

• mkdir unix_class – Creates a new directory called "unix_class"
– The name of the directory is passed to mkdir as an argument,

commands may take zero arguments, such as pwd, or many

• cd unix_class – Changes the current directory to "unix_class"
• cd .. – Shifts the current directory one level up

– ".." always refers to the directory one level above the current directory
– "." always refers to the current directory

• cd unix_class – Return to the "unix_class" directory

File Management

• cp ../Desktop/unix_class.tar.gz . – Copies the file to the
current directory

• ls – Lists the files in the current directory
• cp unix_class.tar.gz temp.tar.gz – Makes a copy of the

file named "temp.tar.gz"
• mkdir tempdir
• mv temp.tar.gz tempdir – Move temp.tar.gz to the new

directory
• cd tempdir
• mv temp.tar.gz temporary.tar.gz – Change the name of

temp.tar.gz to temporary.tar.gz

File Management

• cd ..
• ls -l – Lists the files in the current directory with

additional information
– "-l" is an option or parameter passed to ls that

modifies its behavior
– Other useful parameters for ls include:

• -t: Sort by date modified
• -S: Sort by file size
• -R: List files in subdirectories as well

– Output includes file permissions, file owner, file
group, file size, and date modified

File Permissions

d rwx r-x - - - { { {

Owner Group Others

• r – Read Files/List Files in a Directory
• w – Modify Files/Write New Files to a Directory
• x – Execute a Program or Script/Run Commands within a Directory

Deleting Files

• cd tempdir

• rm temporary.tar.gz – Delete the file
– There is no "Trash" or "Recycle Bin" on UNIX

systems, file deleted using rm are deleted
permanently

• cd ..

• rmdir tempdir – Delete the temporary
directory
– Directories must be empty prior to deletion

Working with Archives

• gunzip unix_class.tar.gz – Decompresses the
"tarball" to "unix_class.tar"
– "unzip" decompresses ".zip" files

• tar -xvf unix_class.tar – Unpacks the files
contained in "unix_class.tar"
– x, v, and f are separate parameters, equivalent to

-x -v -f unix_class.tar

– x indicates files are to be extracted from the archive, v
tells tar to list the files as they are unpacked, and f is
used to tell tar the name of the file to unpack

Working with Text Files

• cat sample1_peaks.bed – Prints entire file to shell
• cat sample1_peaks.bed|more – Prints the file, one screen

at a time
– The pipe (|) indicates that the output of "cat" should be

directed to the input of "more"
– Scroll with up and down arrows, jump one screen at a time with

space bar, quit by pressing "q"

• head sample1_peaks.bed – Prints the first 10 lines of file
• head -n 100 sample1_peaks.bed – Prints the first 100 lines

of file
• tail sample1_peaks.bed – Prints the last 10 lines of file
• head -n 100 sample1_peaks.bed|tail -n 1 – Prints line 100

only

Working with Text Files

• cat sample1_peaks.bed > temp.bed – Prints the entire files and
stores the output in temp.bed, essentially copying the file
– Similar to the pipe, the ">" indicates that the output of "cat" should be

directed to the file "temp.bed"

• diff sample1_peaks.bed temp.bed – Compares the contents of two
files

• cat sample1_peaks.bed >> temp.bed – Appends the output of "cat"
to temp.bed, rather than overwriting it

• diff sample1_peaks.bed temp.bed
– The files are no longer identical

• sort -k1,1 -k2,2n temp.bed > sort.bed – Sorts temp.bed by the first
column alphabetically, the by the second column numerically

Managing Jobs

• Use Ctrl-C to Interrupt a Job

• Use Ctrl-Z to Suspend a Job

• A suspended job can be restarted by running
"fg"

• A suspended job can be placed in the
background by running "bg"

– Additional commands can be run while a job is
running in the background

Managing Jobs

• Append a "&" to a command to start it in the
background

• Use "ps" to view current jobs
– All jobs have unique process ID's, displayed in the first

column of the output

• Use "kill" followed by the process ID to end
problematic jobs
– Example: kill 5109

• Use "top" to view all jobs running on the server
– Quit top with “q”

Working with Text Files

• uniq sort.bed > unique.bed – Removes duplicate lines from
sort.bed

• diff sample1_peaks.bed unique.bed – The files are now
identical

• wc -l *.bed – Count the number of lines in each BED file
• cut -f 1 sample1_peaks.bed > sample1_peaks_chrs.txt –

Print only the first field of each line
• cut -f 2 sample1_peaks.bed > sample1_peaks_starts.txt
• paste sample1_peaks_chrs.txt sample1_peaks_starts.txt

sample1_peaks_starts.txt > joined.txt – Join the extracted
columns into a new three column BED file containing peak
starts rather than intervals

Working with Text Files

• grep "chr3" sample1_peaks.bed – Search
through the BED file, print all lines that
contain "chr3"

– grep is a very fast and powerful search tool that is
highly configurable

• man grep – Displays the manual page for the
grep command

Practical Examples

• Merge Two BED Files, Retaining Only Unique
Peak Locations:
– cat sample*_peaks.bed|sort

-k1,1 -k2,2n|uniq > merged.bed &

• Find Peak Locations Common to Two BED
Files:
– cat sample*_peaks.bed|sort

-k1,1 –k2,2n|uniq -d > common.bed

– wc –l *.bed

Wrapping Up

• history > unix_class.txt – Stores a log of all the
commands run to the file unix_class.txt

• exit – Log out of the server

Server Etiquette

• When you first log in

– Run "who" to see how crowded the server is

– Run "top" to see what jobs are currently running

• Do not use an excessive number of CPU's at
one time

• Keep an eye on the amount of memory your
jobs are using

Storage Organization

• Home directories can be found in
/ddn/gs1/home

• Lab Group directories can be found in
/ddn/gs1/project/nextgen/post
– Nextgen sequencing data stored in this location

• Analysis tools can be found in /biotools
– If an open source tool you need has not been

installed, contact NIEHS Scientific Computing
Support (scs@niehs.nih.gov)

What is Perl?

• General purpose programming/scripting
language

• Very useful and fast for processing text

• Can be run as a script saved in a file, or
directly from the command line

• Typically pre-installed in UNIX
systems

One Liners

• perl -e '[perl code]'

• Examples:
• perl -e 'print "hello world\n";'

• perl -e '$sum=10*((12/3)+2); print "$sum\n";'

• Additional Parameters:
– n: Loop through file line by line

– p: Loop through file line by line and print

– a: Split each line by whitespace

– F'[string]': Split line by character rather than
whitespace

Perl Variables

• Scalars
– Names begin with $

– Hold numbers or strings

• Arrays/Lists
– Names begin with @

– Hold multiple scalars

• Hashes
– Names begin with %

– Hold multiple pairs of scalars

Useful One Liner Template

• perl -ane 'print "$F[0]\t$F[1]\t...$F[n]\n";' in > out

• Special Variable
– "@F" stores the current line separated into fields or

columns by whitespace
• $F[0], $F[1], $F[2], etc. allow access to individual fields

• Print only selected fields from a multi-column input
file, rearrange columns
– Can be used similarly to "cut" and "paste", without the

need for intermediate files

– perl -ane 'print "$F[0]\t$F[1]\t$F[1]\n";'
sample1_peaks.bed > sample1_points.bed

The if Statement

• if(condition) { perl code }: only run the code if the
condition is true

• Test Operators
– eq|ne: equal and not equal, for use with strings
– ==|!=: equal and not equal, for use with numbers
– <|>|<=|>=: less than, greater than, less than or equal

to, greater than or equal to

• else { perl code }: only run the code if the
condition is false

• Example
– perl -e 'if(1==2) { print "yes\n"; } else { print "no\n"; }'

Useful One Liner Template

• perl -ane 'if(X) { print Y; } else { print Z; }' in > out

• Prints different output depending on the
outcome of condition "X"

• Special Variable
– "$_" stores the current line when looping through a

file

• Example: extract all peaks intervals, 200 nt or
shorter, from a BED file
– perl -ane 'if(($F[2]-$F[1])<=200) { print $_; }'

sample1_peaks.bed > sample1_peaks_max200nt.bed

BEGIN, END, and foreach

• BEGIN { perl code }: run this code once before
the first line of the file is read

• END { perl code }: run this code once after the
last line of the file is read

• foreach(@array) { perl code }: run the code on
each element stored in the array

– $_ stores the current array element

Useful One Liner Template

• perl -ane '$hash{$key}++;
END {
 foreach(keys(%hash)) {
 print "$_\t$hash{$_}\n";
 }
}' in > out

• Counts the number of times each "$key" is encountered, then
prints the results

• Example: Determine the distribution of peak sizes in a BED file
– perl -ane '$table{$F[2]-$F[1]}++;

END {
 foreach(keys(%table)) {
 print "$_\t$table{$_}\n";
 }
}' sample1_peaks.bed|sort -k1,1n > sample1_peaks_distribution.txt

Additional Resources

Appendix

Logging into wine (Windows)

• Download puTTY SSH client, and save to your
Desktop
– http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

• Leave all settings at their
default values

• Type "wine" into the
Host Name field

• Click Open

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

Logging into wine (Mac)

• In the Finder, navigate to Macintosh HD ->
Applications -> Utilities

• Drag "Terminal" to the Dock and Click to Run

• Type "ssh wine"

• When prompted,
type "yes"

Transferring Files (Windows)

• Open the Start Menu

• Type \\wine in the
"Search programs and
files" field

//wine
//wine
//wine

Transferring Files (Windows)

• Create, Delete, Copy, and Move files as you
normally would

Transferring Files (Mac)

• Select "Connect to Server"
from "Go" menu

• Type "smb://wine" into
the Server Address field,
click Connect

• Select a folder to mount,
Create, Copy, Delete, and
Move files normally

Changing File Permissions

• File permissions can be modified using "chmod"
• Example

– mkdir temp
– chmod u-w temp – Disables user (owner) write

permissions in tempdir
• "u" refers to owner permissions, "g" refers to group permissions,

"o" refers to other, and "a" refers to all three
• To enable permissions, use "+" instead of "-"

– ls > temp/test.txt
• Results in Permission Denied error message

– chmod u+w temp – Re-enables owner write permissions
– ls > temp/test.txt

• Results in creation of test.txt

Managing Jobs

• Run jobs expected to take a very long time
using "nohup"

– This allows the job to run even if you log out of
the server

– Example: nohup grep "chr3" sample1_peaks.bed >
sample1_peaks_chr3.bed

• Use "disown" to "nohup" a job after it has
been started

	Bookmarks
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide
	Slide

